

MUTAH UNIVERSITY Faculty of Engineering Department of Chemical Engineering

Process Dynamics and Control

COURSE SYLLABUS

Course Code	Course Name	Credits	Contact Hours	
0404541	Process Dynamics and Control	3	48	

INSTRUCTOR/COORDINATOR				
Name	Dr. Taha Alkhamis			
Email	alkhamis@mutah.edu.jo			
Website	https://academic.mutah.edu.jo/Taha_Alkhamis			

TEXTBOOK

1. Process Systems Analysis and Control, Third edition, by Donald R. Coughanowr and Steven E. LeBlanc, McGraw-Hill, 2009.

Other Supplemental Materials

- 1. Chemical process control: An introduction to theory and practice by George Stephanopoulos, Prentice-Hall, 1984 or any later edition.
- 2. Process dynamics and control, by Soberg, Edger, Mellichamp, and Doyle, Third edition, John Wiley & Sons, 2011.

SPECIFIC COURSE INFORMATION

A. Brief Description of the Content of the Course (Catalog Description)

Process dynamics in time and Laplace domains, Input/output relationships and Transfer functions for first, second and higher order systems. Basic components of control systems and its dynamics, Design of single-loop feedback control systems, Stability analysis, Frequency response analysis.

B. Pre-requisites (P) or Co-requisites (C)

0404408 Computer Applications in Chemical Engineering (P)

C. Course Type (Required or Elective)

Required (Compulsory department course)

SPECIFIC GOALS

A. Specific Outcomes of Instruction

By the end of this course, the student should be able:

- 1. To use specific mathematical tools to handle process dynamics and control problems (Differential Equations, Laplace transforms, and Complex Variables) (SLO 1).
- 2. To understand the basic concepts of process dynamics and control: transfer function, first and second order systems, final control elements, block diagram, characteristic equation, and control design with frequency response (SLO 1, SLO 2).
- 3. To understand the impact of process control and stability on environment, product quality, and human life, with application of MATLAB[®] and SIMULINK on some applications (**SLOs 2, and 7**)

B. Student Outcomes Addressed by the Course							
1	2	3	4	5	6	7	
✓	✓					✓	

BRIEF LIST OF TOPICS TO BE COVERED				
List of Topics	No. of Weeks	Contact Hours		
Introduction to process control	1	3		
• Math revision: inversion by partial fractions, Laplace transforms, and solutions of ODEs + MATLAB applications	1	3		
• Transfer function concept and Response of first order systems	1	3		
• Physical examples of first order systems and response of first order systems in series	2	6		
 Higher order systems (second order and transportation lag) Mid-term exam 	1	3		
• Linear closed-loop systems (the control system), controllers and final control elements, development of a block diagram of chemical reactor control system	2	6		
Closed loop transfer function (feedback control), and transient response of simple control systems	1	3		
• Stability: Routh test and root locus and introduction to frequency response	2	6		
• Frequency response and control system design by frequency response	3	9		
• Application to control design: control valves + Final Exam	2	6		
Total	16	48		

METHODS OF ASSESSMENT				
No.	Method of assessment	Week and Date	%	
1	First Mid-term exam	8 th week	30	
2	Homework, Quizzes, Attendance, Possible MATLAB [®] small project	During the Semester	20	
4	Final Examination	Final Week	50	
Total			100	